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Stability results obtained with the fully three-dimensional magnetohydrodynamic code 
BETA, the helically invariant code HERA, and the asymptotic stellarator expansion code 
STEP agree well for a straight I= 2, M = 5 stellarator model. This good agreement between 
the BETA and STEP codes persists as toroidal curvature is introduced. This validation 
provides justification for confidence in work with these models. 0 1986 Academic PR.SS, IUC. 

I. INTRODUCTION 

The recent development of stellarators, including the Wendelstein VII-A, 
Heliotron E, ATF-1, and Wendelstein VII-AS configurations, has renewed interest 
in the ideal MHD equilibrium and stability properties of configurations having no 
symmetry. Most of the studies have utilized a reduced set of equations such as the 
stellarator expansion procedure STEP [l, 23 or three-dimensional codes such as 
BETA [3]. Some effort has been made to validate these codes. Good agreement has 
been found [ 1,4] between the equilibrium predictions obtained with the stellarator 
expansion and those from three-dimensional models. Similarly, stability predictions 
obtained for a straight helical system with the BETA code agree well [S] with those 
from the helically invariant HERA code [6]. The purpose of this paper is to con- 
tinue this validation process by comparing the stability predictions of the stellarator 
expansion method with those of Ref. [S] for a straight I = 2 stellarator and to those 
of the BETA code as toroidal curvature is introduced. This is one of the few cases 
where, on the basis of a mode analysis, a comparison of the predictions of the 
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stability properties of a truly three-dimensional system by different computational 
methods has been made. 

We describe our model in Section II and report a few results for straight I= 2 
systems in Section III. We obtain good agreement between the predictions of the 
three codes for fixed-boundary modes and of the STEP and HERA codes for free- 
boundary modes. In Section IV we introduce toroidal curvature into the model by 
continuously bending the straight system. Here we obtain good agreement between 
STEP and BETA for fixed-boundary computations. We summarize our results in 
Section V and make a few observations. 

II. MODEL 

It is difficult to make this kind of comparison because of differences in 
specifications of the equilibrium parameters. In all three codes we consider a 
straight 1= 2 field configuration of length L = ML, with M= 5 field periods of 
length L, and pitch ha= 2nu/L,=0.66. For the BETA code [3] we prescribe an 
elliptically shaped plasma boundary of average radius a with the ellipticity A, 
chosen to obtain the desired vacuum-field rotational transform or twist at the 
magnetic axis. We vary the average beta, (/I) w 2 (P )/B& with B, the main 
magnetic field, keeping the ellipticity fixed and maintaining zero net current on each 
magnetic surface. We assume a pressure profile p = pO[ 1 - (r/a)‘] with the surface 
label r the average radius. The pressure varies linearly with the area enclosed by the 
magnetic surfaces. The density distribution used to normalize the eigenvalue is 
given by p(r)= [p(r)/p,]‘/*. We use (yL/27w,)* as our eigenvalue, with vA the 
AlfvCn velocity at the magnetic axis. The relation (L/2na)(ya/~,)~~~~,~~~~ = 
(yL/27w,) is used to convert the normalized eigenvalues in Ref. [S] to those of the 
present paper. The equilibrium configuration is unstable if the eigenvalue is 
negative. The HERA model [6] is similar. These models are described in Ref. [S]. 

In the work with STEP [l, 21, we use an r, 8, z pseudocylindrical coordinate 
system. We prescribe a vacuum field 

B=B, e,+iVZ2(hr)sin(2B-hr)+ ... 1 , 

with the Bessel function Z,(hr) a solution of Laplace’s equation in a straight system 
and the parameter 6 chosen to obtain the desired twist lo on axis. This is the model 
that was used in the early stellarator studies [7]. In the long pitch limit, ha -C 1, the 
rotational transform varies as 

I(r)=& l+;(hr)*+&)4+ ... 
[ 1 
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with I = MJ2/16. In the STEP model the pressure varies as p = po( 1 - Y) with Y the 
normalized poloidal flux inside a magnetic surface. We do not change the helical 
field as we introduce toroidicity, changing only the metric element associated with 
the coordinate z and keeping the same helical pitch and number of field periods. As 
we change the toroidal curvature, we adjust the vertical field to keep the plasma 
approximately centered. 

In the BETA code [3], we study the stability properties by repeating the energy 
minimization of the equilibrium study subject to an additional constraint and 
extrapolate in the grid size. This results in a problem of determining differences 
between large terms. In both the STEP [2] and HERA [6] codes, we formally 
extremize the Lagrangian associated with small perturbations from equilibrium. In 
STEP, the lowest order displacement vector is given in terms of a stream function q, 
such that 

5 = Vz x V 1 u,[ ylco)] exp i(m0 - 2rcrmz/L). 
m 

The numbers m and n represent the poloidal and toroidal mode numbers. In our 
plots we present only this lowest order displacement, based on axisymmetric lowest 
order flux surfaces. This simplification removes much of the complication associated 
with the actual eigenfunction and makes interpretation of the results easier. We 
restrict the rotational transform to values near I x0.5 in all of our studies. Since 
Fourier modes with different m-numbers decouple in straight systems, the m = 2, 
n = 1 instability is the only mode of concern. Neighboring poloidal components 
become important as toroidicity is introduced. 

Instabilities where a conducting wall is placed outside the plasma, or even 
infinitely far away, can be studied easily with both the STEP and HERA codes. We 
typically introduce a perfectly conducting surface with the same shape as the 
plasma boundary but with a mean minor radius b. In principle, these free-boundary 
modes can also be investigated with BETA, but much effort is needed to get 
accurate results. We did not use BETA for free-boundary modes in this study. 

Calculations with several computational grids and extrapolation to infinite mesh 
should be done with all three codes. We find that this is essential for both the 
BETA and HERA codes. However, in the work with STEP, the results obtained 
with reasonably sized grids (128 azimuthal and 96 surface points for constructing 
the Fourier components of the equilibrium properties, 48 radial expansion 
functions, and 20 spectral components) are so close to what is obtained from the 
extrapolation that the extra effort is not necessary. 

III. STRAIGHT SYSTEMS 

We consider a class of equilibria with a fixed value of (fl) and different values of 
the rotational transform at the magnetic axis. Results for fixed-boundary modes in 
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FIG. 1. Eigenvalue (yL/2nu,)* as a function of the twist lo at the magnetic axis for fixed-boundary 
m = 2, n = 1 modes in a straight stellarator. The triangles refer to results from HERA, the squares from 
BETA, and the circles from STEP. The upper curves are for (fi) = 3%; the lower ones are for 
(j) = 1.5%. 
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FIG. 2. Maximum eigenvalue (yL/2xu,)* as a function of (j3) for fixed-boundary modes in a straight 

system. The squares refer to results from BETA and the circles from STEP. This leads to an estimate of 
the critical beta; (fi), ~0.3%. 
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FIG. 3. Eigenvalue (yL/2nu,)* as a function of I for (/I) = 3.0% at several wall positions. The 
triangles refer to results from HERA and the circles and dots from STEP. The solid curve is for a fixed- 
boundary case where a conducting shell is placed at the plasma surface. The dashed curves are for a free- 
boundary mode with the wall infinitely far out. The broken curves have intermediate walls of radius b 
with b/a = 1.1. The dotted curve, from STEP, has b/a 1.001. 

systems with (/I) = 1.5%, corresponding to /I(O) =0.030, and (8) = 3.0% 
[p(O) = O.OSS] are shown in Fig. 1. The maximum of the eigenvalue curve for STEP 
occurs near where the boundary twist is I, = 0.5. Similar runs with different density 
distributions and for other values of (/I> also show good agreement. 

A slightly different comparison is given in Fig. 2. Here we plot the maximum 
value of the eigenvalue curve for a given @)-value as a function of (fi) obtained 

FOG. 4. Eigenfunction q for fixed-boundary (solid curve) and close-fitting wall (b/u= 1.001, broken 
curve) modes of Fig. 3 at r 0x 0.4084 (1. = OS], as obtained with STEP. 
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FIG. 5. Displacement vectors associated with the modes of Fig. 4. (a) Fixed-boundary, (b) 
b/a = 1.001. 

with the STEP and BETA codes. The maxima occur at slightly different values of lo 
for the two codes. It is useful to note that the predicted critical (j?)‘s at which this 
m = 2 mode is marginal are nearly. the same. 

We give in Fig. 3 the eigenvalue as a function of to for (fi) = 3% at several 
positions b/a of an external conducting wall in order to investigate the effect of 
relaxing the boundary condition at the plasma surface. Again, good agreement is 
obtained from the STEP and HERA codes. 

It can be seen from Fig. 3 that the eigenvalue is very nearly the same for the 
fixed-boundary case as it is for the free-boundary one where the wall is close to the 

FIG. 6. (rL/2nv,)* versus (a/b)“ for <p> = 3.0%. The solid curves are for lo = 0.50, the dashed curve 
for /,, = 0.54, the broken curve for lo = 0.4. The circles refer to results from STEP and the triangles from 
HERA. 
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FIG. 7. (~L/~xu,)~ as a function of r,, for (1) = 1.5%. The squares refer to results from BETA, the 
circles from STEP. The solid curves are for a straight system with L/2nR = 0; the broken curves are for 
L/2nR=OS with a vertical field B,/B,=O.O09 to center the discharge; the dashed curve is for 
L/2nR=0.7. 

FIG. 8. Maxima of the eigenvalue curves of Fig. 7 at constant (j) versus L/2xR. The squares refer 
to results from BETA, the circles from STEP. These lead to stability before L/2xR = 1. 
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plasma, except near t 0 z 0.4084. There the free-boundary eigenvalue approaches 
that of a free-boundary mode with the wall far outside. The explanation for this 
behavior is that the rotational transform at the plasma surface approaches the 
resonance value t = 0.5 for n/m = 4 so that the normal component of the perturbed 
field, 6B,= (Bo/a)(mr-n) rr, is zero for any finite value of the displacement vec- 
tor. Thus incorporation of a free-boundary model relaxes the fixed-boundary con- 
dition that 5 Ir(a) = 0 without introducing any stabilizing energy from the vacuum 
region. The difference in the perturbations can be seen in Figs. 4 and 5 where the 
stream function q(Y) and the displacement vector 5 are given for the tixed-boun- 
dary and b/a = 1.001 cases. This resonance phenomenon at rational values of 2 is 
very pronounced for the STEP calculations in a straight system where the lowest 
order flux surfaces are functions of only one variable, lyCo) = Y”‘(r). In such a case, 
modes with different m numbers decouple. It is less apparent in calculations where 
toroidicity is introduced [8]. In these cases the equilibrium properties depend on 

FIG. 9. Eigenfunction q and displacement vector 5 from STEP for the fixed-boundary mode of Fig. 7 
with (/I) = 1.5%, L/2nR = 0.7, B,/& = 0.009, and lo = 0.5; (~L/~xu~)~ = -0.014. 



MHD CODE COMPARISONS 453 

two variables and the different poloidal Fourier modes are coupled. When this hap- 
pens, the mixing of the poloidal Fourier harmonics provides stabilization and 
reduces the effect of the resonance. 

The stabilizing effect of a conducting wall on free-boundary modes is shown in 
Fig. 6. Plots of the eigenvalue as a function of u/b show that y2 scales as (a/b)4, 
except for modes exhibiting resonance. This agrees well with analytical expectations 
[7], which are that the perturbation in the outside region varies as (r/~)-~~. 
Similar plots of the eigenvalue as a function of other equilibrium parameters lead to 
the scaling relation - (~u/u,)~ * (/?)(/zu)~(~~/M) which was obtained previously 
c91. 

IV. TOROIDAL SYSTEMS 

In the comparison of the STEP and BETA codes when toroidal curvature is 
present, we consider a class of equilibria with (/I) = 1.5%. Eigenvalues as functions 

FIG. 10. Eigenfunction q and displacement vector 5 from STEP for a free-boundary mode in a 
system with (8) = 1.5%, L/2xR = 0.7, BJB,, = 0.009, and lo = 0.5; (yL/2n~,)~ = -0.049. 
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FIG. 11. dV’(@)/Vb as a function of L/2xR for equilibria with (j)= 1.5% and lo chosen to 
maximize the eigenvalue. Here Cp is the toroidal flux, and the change in I”(@) associated with 
diamagnetic current has been omitted so that the slope measures the part of the average magnetic well 
that provides stabilization. The vertical field. is varied as BJB, - (L/2nR) *I*. 

of lo are given in Fig. 7 for several values of L/271R with R/a the toroidal aspect 
ratio. As noted earlier, the toroidal curvature has no relation to the length of a field 
period L, in our model. The periodicity length L imposed on the perturbation is the 
same five-period length that was used for the straight system. Again, if we determine 
the maxima of the eigenvalue curves as functions of lo at constant L/27rR and plot 
these maximum eigenvalues for different values of L/2nR as in Fig. 8, we obtain 
satisfactory agreement between the two codes. Both codes show the stabilizing effect 
of toroidal curvature. The system becomes stable with respect to an m = 2, n = 1 
mode for this (fl) before the five-field-period length closes on itself. The stabilizing 
effect of toroidal curvature on free-boundary modes is discussed in Ref. [S]. As cur- 
vature is introduced, the unstable eigenfunctions lose their pure m = 2 Fourier 
character as can be seen in the fixed-boundary instability plots of Fig. 9 and the 
analogous free-boundary modes of Fig. 10. 

The stabilizing effect of toroidal curvature can be explained by the average 
magnetic well created by the outward shift of the magnetic axis associated with the 
Pfirsch-Schliiter current. This is illustrated in Fig. 11, where the well depth AV'/V is 
plotted as a function of the toroidal curvature parameter L/27cR. This was 
calculated using the STEP code. 

V. DISCUSSION 

The quantitative agreement between the results of the different codes are better 
than might have been expected. All three have reason for confidence when used for 
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properly chosen applications. The HERA treatment of the equilibrium and stability 
properties of a helically invariant system should be expected to be quite accurate 
since the code uses the formalism developed in the ERATO code for axially sym- 
metric configurations [lo]. Since the BETA code uses an energy minimizing techni- 
que to get to an equilibrium configuration, it is reasonable to expect it to provide 
good equilibrium properties. Although its stability predictions should be less 
reliable since they are determined from a calculation requiring cancellation of large 
terms in the energy, they too should give some insight. The STEP program is based 
on the smallness of the ratio of the helical field to the toroidal field at the plasma 
boundary, which for a typical case in this paper is about 0.2. Even though the 
model consists of averaging over the helical field periods as if there were an infinite 
number, the smallness of B6/Bo gives considerable hope that the results can give 
some insight into the physics. Since the STEP code uses the formulation developed 
in the PEST program for equilibrium and stability studies of axisymmetric con- 
figurations [ 111, it should give reliable results. Thus, although the asymptotic 
expansion methods used in STEP could have some effect, the principal difference in 
results is due to the difficulty involved in representing the same equilibrium con- 
figuration because of the different ways of specifying the boundary shapes and 
pressure distributions. The good agreement found in this work indicates that the 
global instabilities do not depend strongly on the exact specification of plasma 
shape or pressure distribution for this model stellarator. 

This work provides considerable justification for using asymptotic methods such 
as STEP [ 1,2] or an analogous specific variable approximation [ 123, stellarator 
expansion initial value codes [4, 131, helical-axis modifications of this expansion 
[14,15], or other numerical techniques [ 161 to get a rough understanding of the 
MHD properties of a stellarator configuration, and then use the more powerful 
three-dimensional techniques to refine the work. Some progress in this direction has 
already been made, including prediction of a possible Plirsch-Schliiter-current- 
driven instability in the ATF-1 device [17], with correction possible by adjusting 
the external vertical field with increasing (p) [IS], and estimations of unstable 
free-boundary mode eigenvalues in Wendelstein VII-A and more compact I= 2 
stellarators [ 81. 

An interesting physics result that was made obvious in this study was the dif- 
ference in behavior of unstable fixed-boundary modes from free-boundary modes in 
a one-dimensional plasma model where the rotational transform has low-order 
rationality at the plasma surface (as in Fig. 3). This arises because the perturbed 
magnetic field becomes small at the plasma surface, no matter what the dis- 
placement vector does. Thus the usual constraint on the perturbation is relaxed. 
Although this effect is not as pronounced when the mode separation is less com- 
plete, this mechanism may provide a partial explanation for the strong 
deterioration of energy confinement in Wendelstein VII-A as the twist is varied 
through these rational values. Since there is little shear in this device, a possibly 
more plausible explanation would be the loss of equilibrium when the magnetic 
field lines close on themselves. 

581/66/2-14 
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If the toroidal curvature is increased beyond a critical value in our model, the 
m = 2 mode becomes stable. This occurs before the five-field-period magnetic struc- 
ture closes on itself. As indicated by the variation of AV’/Vb in Fig. 11, this is 
associated with the outward shift of the magnetic surfaces with respect to the 
plasma boundary which creates a sufficiently strong magnetic well to provide 
stabilization. Another estimate of the effect of curvature on the stability properties 
is given by the Mercier criterion [ 191 which measures the interaction of shear with 
both the normal curvature (which creates the average magnetic well) and the 
geodesic curvature. Although both the AV’/Vb and Mercier criteria are derived by 
considering high m and n localized modes or shearless systems, they provide some 
indication of the stability properties with respect to low-m modes for systems with 
little force-free current. It has been shown in other studies that the Plirsch-Schliiter 
current can drive kink like modes even though there is no net force-free current in 
the plasma at sufficiently large values of beta [ 171. As discussed in a recent study of 
Mercier and ballooning mode criteria [20], the stabilization associated with the 
deepening of the magnetic well because of the Ptirsch-Schltiter current competes 
with the destabilizing forces associated with these currents. More work should be 
done to resolve these relationships, particularly with respect to higher-n modes. 
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